Day 05

Rigid Body Transformations

Homogeneous Representation

- translation represented by a vector d
- vector addition
- rotation represented by a matrix R
- matrix-matrix and matrix-vector multiplication
- convenient to have a uniform representation of translation and rotation
- obviously vector addition will not work for rotation
- can we use matrix multiplication to represent translation?

Homogeneous Representation

consider moving a point p by a translation vector d

$$
\left.\begin{array}{c}
p+d=\left[\begin{array}{l}
p_{x} \\
p_{y} \\
p_{z}
\end{array}\right]+\left[\begin{array}{l}
d_{x} \\
d_{y} \\
d_{z}
\end{array}\right]=\left[\begin{array}{l}
p_{x}+d_{x} \\
p_{y}+d_{y} \\
p_{z}+d_{z}
\end{array}\right] \\
?
\end{array}\right]\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z}
\end{array}\right]=\left[\begin{array}{l}
p_{x}+d_{x} \\
p_{y}+d_{y} \\
p_{z}+d_{z}
\end{array}\right] .
$$

not possible as matrix-vector multiplication always leaves the origin unchanged

Homogeneous Representation

consider an augmented vector p_{h} and an augmented matrix D

$$
\begin{aligned}
p_{h}=\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right] \quad D=\left[\begin{array}{cccc}
1 & 0 & 0 & d_{x} \\
0 & 1 & 0 & d_{y} \\
0 & 0 & 1 & d_{z} \\
0 & 0 & 0 & 1
\end{array}\right] \\
D p_{h}=\left[\begin{array}{cccc}
1 & 0 & 0 & d_{x} \\
0 & 1 & 0 & d_{y} \\
0 & 0 & 1 & d_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right]=\left[\begin{array}{c}
p_{x}+d_{x} \\
p_{y}+d_{y} \\
p_{z}+d_{z} \\
1
\end{array}\right]
\end{aligned}
$$

Homogeneous Representation

the augmented form of a rotation matrix $R_{3 \times 3}$

$$
\begin{aligned}
& R=\left[\begin{array}{cccc}
{\left[\begin{array}{llll}
& & \\
& R_{3 \times 3} & \\
& & & \\
0 & 0 & 0 &
\end{array}\right]} \\
0 \\
0 \\
0
\end{array}\right] \\
& R p_{h}=\left[\left[\begin{array}{ccc}
& & \\
& R_{3 \times 3} & \\
& & \\
0 & 0 & 0
\end{array}\right] \begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right]=\left[\begin{array}{c}
\\
1
\end{array}\right]
\end{aligned}
$$

Rigid Body Transformations in 3D

Rigid Body Transformations in 3D

- suppose $\{1\}$ is a rotated and translated relative to $\{0\}$ what is the pose (the orientation and position) of $\{1\}$ expressed in $\{0\}$?

$$
T_{1}^{0}=?
$$

Rigid Body Transformations in 3D

- suppose we use the moving frame interpretation (postmultiply transformation matrices)

Rigid Body Transformations in 3D

- suppose we use the fixed frame interpretation (premultiply transformation matrices)

1. rotate in $\{0\}$ to get $\left\{0^{\prime}\right\}$ R
2. and then translate in $\{0\}$ in to get $\{1\} \quad D R$

Step I

Rigid Body Transformations in 3D

- both interpretations yield the same transformation

$$
\begin{aligned}
& T_{1}^{0}=D R \\
& =\left[\begin{array}{llll}
1 & 0 & 0 & {[} \\
0 & 1 & 0 & d \\
0 & 0 & 1 & {[} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\left[\begin{array}{lll}
& & \\
& R_{3 \times 3} & \\
& &
\end{array}\right] \begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array} 0\right. \\
& =\left[\begin{array}{ccc}
{\left[\begin{array}{lll}
& & \\
& R_{3 \times 3} & \\
0 & 0 & 0
\end{array}\right]} & {\left[\begin{array}{c}
d \\
\end{array}\right]}
\end{array}\right]
\end{aligned}
$$

Homogeneous Representation

- every rigid-body transformation can be represented as a rotation followed by a translation in the same frame
- as a 4×4 matrix

$$
T=\left[\begin{array}{llll}
& R & & d \\
0 & 0 & 0 & 1
\end{array}\right]
$$

where R is a 3×3 rotation matrix and d is a 3×1 translation vector

Homogeneous Representation

in some frame i
p points

$$
P^{i}=\left[\begin{array}{c}
p^{i} \\
1
\end{array}\right]
$$

vectors

$$
V^{i}=\left[\begin{array}{c}
v^{i} \\
0
\end{array}\right]
$$

Inverse Transformation

the inverse of a transformation undoes the original transformation

- if

$$
T=\left[\begin{array}{llll}
& R & & d \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- then

$$
T^{-1}=\left[\begin{array}{ccc}
R^{T} & -R^{T} d \\
0 & 0 & 0
\end{array}\right]
$$

